Influence of Dy$^{3+}$ ions on the spectroscopic studies of thermally stable telluro-zinc-phosphate glasses for white light emitting devices

Vikas1, Vertika Siwach1, Mukesh K. Sahu1,2, Indrajeet Maurya1, M. Jayasimhadri1*, D. Haranath3

1Luminescent Materials Research Lab (LMRL), Department of Applied Physics, Delhi Technological University, Delhi-110 042, India
2School of Computing, Graphic Era Hill University, Haldwani, Uttarakhand, 263 136, India
3Department of Physics, National Institute of Technology Warangal-506 004, India

*Corresponding author E-mail: jayaphysics@yahoo.com

Abstract

A transparent series of telluro-zinc-phosphate glasses along with varying Dy$^{3+}$ ion concentrations (TZPD) have been synthesized via utilizing the melt-quenching procedure. The non-crystalline character of the as-prepared TZPD glass matrices has been demonstrated from the observed X-ray diffraction (XRD) profile. In order to recognize the proficient usage of the as-prepared TZPD glass matrices in the white light emitting devices, the spectroscopic characteristics such as optical absorption, photoluminescence excitation and emission, as well as temperature-dependent photoluminescence were conducted and investigated in detail. The optical absorption spectral studies were measured in the n-UV to NIR range for the as-prepared TZPD glasses and optical band gap energy was evaluated via utilizing the Tauc’s plot. In the visible range, photoluminescence spectra exhibit three distinct emission peaks under different n-UV excitations, among which a strong emission peak around 575 nm is associated with the 4F$_{9/2}$ → 6H$_{13/2}$ transition in the as-prepared TZPD glasses. The color coordinates (x, y) for the as-prepared TZPD glasses have been situated in the white light region of the CIE graph and adjacent to the standard white light region (0.33, 0.33) [1-2]. Furthermore, temperature-dependent photoluminescence spectral studies suggest the excellent thermal stability of the as-prepared TZPD glass samples along with a high value of activation energy. In view of the above results, as-prepared TZPD glasses can be employed for the fabrication of thermally stable white light emitting devices.

References: